Future Generation Computer Systems 162 (2025) 107472

Contents lists available at ScienceDirect x =
FIBICIS!

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs e

»

Check for

15+ years of joint parallel application performance analysis/tools training e
with Scalasca/Score-P and Paraver/Extrae toolsets

Brian J.N. Wylie ®*, Judit Giménez >, Christian Feld ?, Markus Geimer ?, Germéan Llort ",
Sandra Mendez ", Estanislao Mercadal ®, Anke Visser ?, Marta Garcia-Gasulla”

a Jiilich Supercomputing Centre, Forschungszentrum Jiilich GmbH, 52425, Jiilich, NRW, Germany
b Barcelona Supercomputing Center, Plaga Eusebi Giiell, 1-3, Barcelona, 08034, Catalunya, Spain
¢ Universitat Politécnica de Catalunya — BarcelonaTech, Carrer de Jordi Girona, 31, Barcelona, 08034, Catalunya, Spain

ARTICLE INFO

Keywords:

Hybrid parallel programming

MPI message-passing

OpenMP multithreading

OpenACC device offload acceleration
HPC application execution performance
measurement & analysis

Performance assessment & optimisation
methodology & tools

Hands-on training & coaching

ABSTRACT

The diverse landscape of distributed heterogeneous computer systems currently available and being created
to address computational challenges with the highest performance requirements presents daunting complexity
for application developers. They must effectively decompose and distribute their application functionality and
data, efficiently orchestrating the associated communication and synchronisation, on multi/manycore CPU
processors with multiple attached acceleration devices structured within compute nodes with interconnection
networks of various topologies.

Sophisticated compilers, runtime systems and libraries are (loosely) matched with debugging, performance
measurement and analysis tools, with proprietary versions by integrators/vendors provided exclusively for
their systems complemented by portable (primarily) open-source equivalents developed and supported by the

international research community over many years. The Scalasca and Paraver toolsets are two widely employed
examples of the latter, installed on personal notebook computers through to the largest leadership HPC systems.
Over more than fifteen years their developers have worked closely together in numerous collaborative projects
culminating in the creation of a universal parallel performance assessment and optimisation methodology
focused on application execution efficiency and scalability, and the associated training and coaching of appli-
cation developers (often in teams) in its productive use, reviewed in this article with lessons learnt therefrom.

Contents

1 JE0E o LR T u o) R PP PPPPPPT Y 2
2 Partner OrganiSaAtiONS & PIOJECES....cuuuiiuuieuuiiti ittt ettt ettt et ettt taa e eauetra e ttaeseaaesetsestansetasseanessssestansesssseesesstnssennssesssstsnsetnssensssessestensernnsens 3
2 V4 5PN 3

2 0) O)PP 3

2.3. JLESC PIOJECL...eituuunieiiunntietiuiintetiuniteetuasstettanaseetasaeseetaasesettasaeseetasseseetsssassetsasseseetassessetsassssestssseseetussssetsassesestussessetssnssertuseseerussessernes 4

3 610 TP PP P PR PPPPPOPPOPPPPRY 4
3.1. BSC: Paraver/Extrae toolset... . 4
3.1.1. Extrae............... . 4

3.1.2. Paraverc......... . 4

3.1.3. PerfOrmance ANaAlytiCS...... e ieeuuuerieriunireeiiner ettt ettt et tene et e ttea s eetana s e erena e ettana s et tana e etana s et tan e et ana st et e et e e tena e erannsenannans 5

3.104. DIHIMEINIAS teetenuiiiiiuniteetiii ettt ettt ettt et ttaae s et taaa s et tana s e taaa s e et ana e et e a s e et e s et b an s et aa s e et an s e et et et e e s e et e nt s e et anr s etaanaes 6

3.1.5. Efficiency MOAELuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiceit et e e e e s a e e e e e e e s s s s e e e e e e e e e s s aaaaae 6

3.2, JSC: Scalasca/Score-P/CUBE tOOISEL......cuuuuuuuuuuuuiieerierteeertttttuttmuesieeseesteeeeeettentassssasiseesteteesettettssssmesmasiessesteeseseettessssmsmsmsessessesssseesans 7
3.2.1. Execution and SCAlING effiCIEICIES ..c.uuuiiieueriiiiiiie ettt ettt ettt ettt e ettt e e ettaa e e eetena s eetenae s eeetenaeseetenaeseenennesseaeenneseerennnnsenennnns 7

3.3. Complementarity and development Of BSC & JSC TOOLS ...cceuuutiettuuuireeitneeeetinaeeettene e eeteneeeettaueseetenaeseetennesaeneenasseetenaesterennassereennsseenenneseenens 9

L 1 11 o PP 9
O Y U0 o PPN 9

4.2, TUNING WOTKSIODS ttttttrruruuuiiiiieerteeteeetttttunttiuiieeeseeseeeeetetteresnnnsaaaeesesseesseeestenesssssnnssssssassseseeeestanesssssnnmsssssssessesseseenesnsssssnnnassessessesssseenans 10

* Corresponding author.
E-mail addresses: b.wylie@fz-juelich.de (B.J.N. Wylie), judit@bsc.es (J. Giménez).

https://doi.org/10.1016/j.future.2024.07.050

Received 8 January 2024; Received in revised form 10 July 2024; Accepted 29 July 2024

Available online 2 August 2024

0167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-

nc/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:b.wylie@fz-juelich.de
mailto:judit@bsc.es
https://doi.org/10.1016/j.future.2024.07.050
https://doi.org/10.1016/j.future.2024.07.050
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.07.050&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

B.J.N. Wylie et al.

4.3. Staggered WOrkShop SEriescccceervvrvmmumuuuceerneneens
4.4. Workshops by & for under-represented groups in HPC

5. DISCUSSION c.ceuuuniiiiiiiiiiii et e e e
6. CONCIUSION .eiviiiiiiiiiiiiiiinie e e
CRediT authorship contribution statementceeuuereiienerierinnnreneen.
Declaration of competing interest..........oooeveuuurvieiieeiiiiiiiiiiiiinniieneenennn.
Data availabilityeeeeeeeiiiiiiiiiiiiiiiiiiiiie e
AcCKNOWIEdZEMENLS ...uuuuiiiiiiiiiiiiiiiiiiiiiiiee e ee et
REfEIENCES...ciiiiiiiiiiiiiiiiiiiiee ettt e et e

Future Generation Computer Systems 162 (2025) 107472

1. Introduction

Current operational and anticipated high-performance computing
(HPC) computer systems are particularly large and complex, resulting
in significant challenges both to write correctly functioning and per-
formant code that scales and executes efficiently. Parallelism has long
been required for both shared and distributed memory of increasingly
heterogeneous hardware comprising multicore/manycore processors
(CPUs) and attached accelerator devices (typically GPUs). Distinct par-
allel architectures have motivated dialects and extensions to common
programming languages or entirely new ones.

At the University of Edinburgh, one author [BJNW] was first exposed
in their 1986 final-year B.Sc. physics project to the massively-parallel
ICL Distributed Array Processor programmed in DAP-Fortran, mo-
tivated their subsequent Ph.D. harnessing the Edinburgh Concurrent
Supercomputer Meiko Computing Surface and CS-2 transputers’ with
occam for computational fluid dynamics simulations, and lead to
an application scientist position in the nascent Edinburgh Parallel
Computing Centre (EPCC) developing the award-winning PARAMICS
massively-parallel ‘microscopic’ traffic simulator [1] in C* for the
Thinking Machines Connection Machine CM-200.

From this hotbed of parallel computing innovation (which continues
unabated), it was early recognised the need for comprehensive train-
ing to aide application developers effectively exploit these regularly
evolving computer systems. With Stephen Booth, Lyndon Clarke, Neil
MacDonald, Mike Norman, Nick Radcliffe, Greg Wilson? and many
others, highly effective training centred on incremental constructive
hands-on parallel programming and software engineering exercises was
developed, and via Train-the-Trainer Training (TTT) a multitude of
instructors trained to deliver the training in many courses, tutorials and
workshops. Subsequent career positions developing parallel application
performance analysis tools in partnership with NEC Corp. and with Sun
Microsystems Inc. further emphasised the concurrent need for effective
training and coaching in the use of those powerful and sophisticated
tools.

After joining the R&D groups of Bernd Mohr and Felix Wolf support-
ing application developers with portable parallel performance analysis
tools at Forschungszentrum Jiilich in 2004, and more specifically the
Virtual Institute-High-Productivity Supercomputing (VI-HPS), member
discussion quickly motivated establishing a series of workshops® ded-
icated to hands-on parallel performance analysis and tuning with VI-
HPS member tools. The Scalasca toolset from JSC (originally before
integration of Score-P) and Paraver toolset from BSC were featured in
the first VI-HPS Tuning Workshop hosted by RWTH Aachen and almost
all of the subsequent forty-plus (in-person and virtual) workshops. A

1 Contemporaneously in 1991 the first introduction to parallel computing
for JG at Universitat Politécnica de Catalunya & Parsys Espaiia SA. https:
//en.wikipedia.org/wiki/Transputer

2 Wilson later established The Carpentries global community teaching foun-
dational data and coding skills through instructional workshops. [2] https:
//carpentries.org/.

3 Now more commonly referred to as hackathons, testathons or tunathons.

wide variety of bespoke training workshops (for HPC Centres of Excel-
lence [3] and other organisations) and hands-on tutorials at conferences
have also paired the toolsets.

Each toolset has its own strengths and limitations, suiting it for
particular uses and users according to their needs and experience.
Opportunities to learn about and try out each, with actual application
codes on a specific computer system, are therefore especially valuable.
As well as the application developers finding the tools that best suit
them, such joint training events provide insight to the tools developers
as to the opportunities and priorities for improvements.

Tools developed by hardware and system vendors may access in-
ternal and undocumented aspects of their computer systems that are
not readily available to open-source tools. Such information can be
extremely helpful for platform-specific insight and optimisations, while
complementing multi-platform tools that facilitate performance com-
parisons between systems and ease user migration from one to another.
Additionally, Linux interfaces are exploited by a large set of tools for
portable performance analysis on HPC, cloud-based and other com-
puter systems down to individual workstation and notebook computers.
Training covering this spectrum of available tools is therefore essential.

Application developers targeting extreme-scale HPC systems — such
as JUQUEEN, Kei computer and Fugaku, heterogeneous systems such
as MareNostrum5, and modular supercomputing architectures such as
JUWELS Cluster+Booster and the first ExaFLOPs supercomputer in Eu-
rope JUPITER* — need effective tools to assist with porting and tuning
for these unusual systems.

The XcalableMP compilation system (and directive-based language)
[4-71, Paraver/Extrae/Dimemas performance analysis tools [8,9] and
Scalasca/Score-P/CUBE execution measurement and analysis tools [10,
11] are notable examples of tools developed by RIKEN R-CCS, BSC
and JSC for this purpose. The performance tools utilise the PAPI
library from UTK to acquire metrics from hardware and software
counters [12].

Within the Joint Laboratory for Extreme-Scale Computing (JLESC)
a dedicated project extends support of these tools for members’ HPC
systems and exploits their capabilities in an integrated workflow for
porting and tuning of parallel applications on extreme-scale parallel
systems. Existing training material has been adapted to collaborators’
large-scale HPC systems, augmented with newly prepared material,
and refined for better uptake based on participant evaluations and
feedback. Travel and accommodation expenses of training presenters to
participate in joint training events (such as VI-HPS Tuning Workshops
outside of Europe in Japan and USA) was supported. Collaborative
work with application developers assessed the effectiveness of the tools,
and helped direct development of new tool capabilities.

This article summarises more than fifteen years of joint parallel
performance analysis/tools training with our tools, discussing lessons
learnt therefrom.

4 Joint Undertaking Pioneer for Innovative and Transformative Exascale
Research: https://jupiter.fz-juelich.de.

https://en.wikipedia.org/wiki/Transputer
https://en.wikipedia.org/wiki/Transputer
https://carpentries.org/
https://carpentries.org/
https://jupiter.fz-juelich.de

B.J.N. Wylie et al.

Future Generation Computer Systems 162 (2025) 107472

Table 1

Institution project membership, HPC systems and tools.
Institution JLESC POP CoE VI-HPS (Prior)/Current/[Future] HPC Systems Application tools
ANL + - - (Mira)/Polaris — Theta/[Aurora] Darshan
BSC + + + (MareNostrum4 — CTE-Power)/MareNostrum5 Paraver Extrae Dimemas
FAU-RRZE - - + Alex — Fritz — Meggie — Woody LIKWID
FZJ-JSC + + + (JUQUEEN)/JURECA — JUWELS/[JUPITER] Scalasca/CUBE Score-P
HLRS - + + (HazelHen)/Hawk — Kabuki — Vulcan/[Hunter] Memchecker
INRIA + - - Grid’5000 SIMGRID
1T41 - + a Barbora — Karolina MERIC
INESC-ID - + a —/[Deucalion] CARM IntelRoofline
Linaro - - + internal systems only Forge DDT/MAP/PR
LLNL - - + (Sequoia)/Sierra/[ElCapitan] Caliper PnMPI STAT
LRZ - - + (SuperMUC)/SNG — BEAST — CoolMUC/[SNG-2] Cachegrind
R-CCS + - - (Kei)/Fugaku XcalableMP
RWTH - + + (CLAIX-2018)/CLAIX-2023 MUST Archer
TERATEC - + - Curie — Joliot
TUD-LPP - - + Lichtenberg DiscoPoP Extra-P
TUD-ZIH - - + (Taurus)/Barnard Score-P Vampir
TUM - - + as LRZ mpiP GPUscout
UIUC-NCSA + - - (BlueWaters)/Delta/[Delta-Al]
UO-PRL - - + Franken TAU PDT ParaProf PerfExplorer
UTK-ICL + - + (Kraken)/— PAPI
UvsQ - + as TERATEC MAQAO

2 membership pending.
2. Partner organisations & projects

Barcelona and Jiilich Supercomputing Centres have partnered for
many years in a wide variety of collaborations on parallel application
performance analysis tools, where joint training played a central role.
Some of these collaborations are summarised in Table 1, including each
institution’s HPC systems and locally-developed application tools, and
detailed in this section.

2.1. VI-HPS

The Virtual Institute-High Productivity Supercomputing (VI-HPS)
was established to improve the quality and accelerate the development
process of complex simulation codes in science and engineering that
are designed for and running on the most advanced highly-parallel
computer systems. Activities comprise development and integration of
HPC application development tools, primarily those for performance
analysis and correctness checking of parallel applications, training with
those tools via tutorials and workshops/hackathons, plus organising
symposia with a technical program related to tools usually embedded
in an HPC-related conference program.

VI-HPS tools development efforts place particular emphasis on scal-
ability and ease of use, with training and support an essential com-
ponent of the mission to inform application developers of the benefits
they can obtain by using them. While platform-specific tools are not
excluded from the VI-HPS portfolio, tools which support multiple plat-
forms of diverse processors and architectures are favoured. In this
regard, open-source and free to use tools are also preferred, while tools
with commercial licenses are required to support multiple platforms for
them to be included.

Complementing the other VI-HPS activities, ProTools workshops on
Programming and Performance Visualisation Tools have been held annu-
ally in conjunction with the SC (Supercomputing) conference series
since 2019. Prior to this, ESPT workshops on Extreme-Scale Programming
Tools were held in conjunction with SC conferences between 2012 and
2018, and PROPER workshops on Productivity and Performance Tools
held in conjunction with the Euro-Par conference series between 2008
and 2014.

Start-up funding from the Helmholtz Association of German re-
search centres in 2006 supported the founding partners of VI-HPS:
Jiilich Supercomputing Centre of Forschungzentrum Jiilich, Centre for
Computing & Communication (later IT Center) of RWTH Aachen Uni-
versity, Centre for Information Services & HPC of Dresden University

of Technology (Technische Universitit Dresden) and associate part-
ner Innovative Computing Laboratory of the University of Tennessee
(Knoxville).

Since the expiry of Helmholtz seed funding in 2011, VI-HPS has
added another ten partners from around Europe and USA: Friedrich-
Alexander-Universitit (FAU) Erlangen-Niirnberg, Leibniz Supercomput-
ing Centre (LRZ), Technical University of Darmstadt, Technical Univer-
sity of Munich (TUM) and University of Stuttgart (HLRS) in Germany,
Barcelona Supercomputing Center (BSC), Lawrence Livermore National
Laboratory (LLNL), University of Oregon, Université de Versailles St.-
Quentin-en-Yvelines (UVSQ), and finally the Allinea software team now
part of Linaro Ltd.

A VI-HPS Tools Guide booklet [13] offers a brief overview of the
respective tools contributed by the project partners, showcasing their
individual debugging, correctness checking and performance measure-
ment and analysis capabilities, and indicating their support for parallel
computer systems, programming models and languages. Detailed infor-
mation about each particular tool can be found on the websites listed
therein and on the VI-HPS website itself.®

2.2. POP CoE

The Performance Optimisation and Productivity Centre of Excel-
lence (POP CoE) for HPC Applications has been funded since 2015 by
the European Union Horizon program and from 2024 by the EuroHPC
Joint Undertaking (JU).° It gathers leading European experts in parallel
performance tools/analysis and programming models to offer services
to the academic and industrial communities to help them better under-
stand the execution behaviour of their applications, suggest the most
productive directions for optimising the performance of the codes and
help implementing those transformations in the most productive way.

Partners are Barcelona Supercomputing Center (BSC), University of
Stuttgart High Performance Computing Center (HLRS), Jiilich Super-
computing Centre of Forschungzentrum Jiilich, RWTH Aachen Univer-
sity IT Center, TERATEC association (France), Université de Versailles
St.-Quentin-en-Yvelines (UVSQ, France) and VSB-Technical Univer-
sity of Ostrava IT4Innovations National Supercomputing Center (IT4I,
Czechia), joined in 2024 by Instituto de Engenharia de Sistemas e
Computadores: Investigacdo e Desenvolvimento em Lisboa (INESC-
ID, Portugal). Numerical Algorithms Group Ltd. (NAG, UK) were also

5 https://www.vi-hps.org/
6 https://www.pop-coe.eu/

https://www.vi-hps.org/
https://www.pop-coe.eu/

B.J.N. Wylie et al.

Extrae

Trace generation

Trace analysis

Paraver

Data browser

Dimemas
Message-passing
simulator

Performance
Analytics

Fig. 1. BSC-Tools ecosystem.

a partner in POP CoE until 2022. With most partners contributing
performance and correctness tools to POP services and developing
training for the tools and an associated parallel execution efficiency and
scalability methodology, synergies with VI-HPS are exploited. (Both
INESC-ID and IT4I are expected to join VI-HPS in 2024.)

2.3. JLESC project

With training in performance tools at the core of VI-HPS and POP
CoE, and motivated to outreach to major HPC institutions in Japan and
USA, it was beneficial to establish the project Developer tools for porting
and tuning parallel applications on extreme-scale parallel systems in 2014,
between Jiilich Supercomputing Centre of Forschungszentrum Jiilich,
Barcelona Supercomputing Center (BSC), RIKEN Center for Computa-
tional Science (R-CCS) and research partner the University of Tennessee
Knoxville (UTK), in conjunction with Institut national de recherche en
informatique et en automatique (INRIA, France), National Center for
Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign (UIUC), and Argonne National Laboratory (ANL)
within the Joint Laboratory for Extreme-Scale Computing (JLESC).”

3. Tools

We first introduce the toolsets developed by Barcelona Supercom-
puting Center and Jiilich Supercomputing Centre that have collaborated
in our JLESC project and related activities.

3.1. BSC: Paraver/Extrae toolset

The Paraver toolset was created in 1991 under the research of UPC
(Universitat Politécnica de Catalunya-BarcelonaTech). Since its estab-
lishment in 2005, the Barcelona Supercomputing Center (BSC-CNS)
has been responsible for the performance tools research and develop-
ment [9]. The suite of tools is designed to streamline the performance
analysis of parallel applications, and is available as open source under
the GNU LGPL v2.1 license. This toolset encompasses the generation of
detailed execution traces, a data visualisation browser for qualitative
analysis and quantitative calculations, a message passing simulator, and
what we term performance analytics—data analytics techniques applied
to performance data. These tools work together seamlessly in an inte-
grated ecosystem, as shown in Fig. 1, creating a powerful synergy that
helps developers and analysts optimise application performance, iden-
tify scalability bottlenecks, and make informed decisions to enhance
overall efficiency in high-performance computing environments.

3.1.1. Extrae

A typical analysis workflow starts from the Extrae tracing frame-
work [14], which uses several mechanisms to transparently capture

7 https://jlesc.github.io/

Future Generation Computer Systems 162 (2025) 107472

performance data, ranging from dynamic instrumentation of unmodi-
fied production binaries to static linking. Yet, one of the most straight-
forward and preferred methods is the LD_PRELOAD interposition to
intercept function calls of production binaries at loading time.

The traces collected by Extrae include entry and exit to the program-
ming model runtime, hardware counters through the PAPI library,® call-
stack references, periodic samples and some system calls. Users have
the flexibility to add program routines’ invocations (not included by
default) and instantaneous events. Focusing on the activity of the paral-
lel runtime guarantees minimal overhead in most scenarios, given that
the application’s use of the parallel runtime should be not excessively
fine-grained.

Extrae supports the main parallel programming models, namely
MPI, OpenMP, CUDA, OpenCL, pthreads and OmpSs, and new inter-
faces such as GASPI, OpenACC and ROCm. It supports programs written
in C, Fortran, Java and Python, as well as combinations of different
languages, hybrid and modular codes. It is available for most UNIX-
based operating systems and has been deployed in all relevant HPC
architectures and platforms, including x86-64, ARM, ARM64, POWER,
RISC-V, SPARC64, BlueGene, Cray, and HPC accelerators.

XMP extension. In the JLESC project, Extrae was extended to instru-
ment the XcalableMP runtime [5], a directive-based language extension
which allows users to develop parallel programs for distributed memory
systems easily and to tune the performance by having minimal and
simple notations. The instrumentation was achieved using XMPT, the
generic tool API of XMP, based on runtime callbacks and using the
Extrae API to emit events from an independent library, serving as a
proof-of-concept for an external plugin within the tool.

In addition to capturing entry and exit points in the XMP runtime,
the tool can also track the underlying MPI activity. This allows to
present views correlating XMP functions with the MPI layer, as illus-
trated in Fig. 3 for a detailed iteration of the main computing loop in an
8-process execution of the Impact3D benchmark. This depiction shows
XMP calls over time at the top and MPI calls with communication lines
at the bottom.

Furthermore, this capability allows for the precise identification
of overhead introduced by individual layers within the parallel run-
time, including both the XMP and MPI. Fig. 2 displays the time
percentage ratio of internal MPI activity in XMP calls. The left ta-
ble reveals that nearly all the time spent inside xmp_barrier is
attributed to MPI Barrier. However, within coarray_write and
coarray_read, XMP introduces an overhead exceeding 50% on top
of the MPI layer.

Overall, the availability of XMP performance data provides valuable
feedback not only to application developers regarding their code perfor-
mance, but also to XMP runtime developers concerning the efficiency
of their implementation.

3.1.2. Paraver

Paraver is a highly flexible data browser [8,15]. It enables the an-
alyst to create two main types of views: timelines and tables, allowing
the display of a vast number of metrics with the available data. The
timelines depict the activity over time (x-axis) of each process/thread
(y-axis) in the execution. The tables, whether in the form of profiles or
histograms, aggregate statistics over any selected region. These views
can display categorical information, such as the calls made to the
parallel runtime, illustrated by Figs. 4(a) and 4(b) for the MPI calls,
and continuous metrics, such as the duration of the computing phases,
illustrated by Fig. 5(a), and the histogram in Fig. 5(b).

Users can customise metrics in Paraver through a filter module, time
functions, and mechanisms for combining timelines and correlating dif-
ferent metrics. The expert’s knowledge can be captured by saving any

8 https://icl.utk.edu/papi

https://jlesc.github.io/
https://icl.utk.edu/papi

B.J.N. Wylie et al.

Average
Avg/Max

Outside MPI | MPI_Barrier

7.921119% 92.07889 %

0.92510 0.99221

(a) xmp_barrier

Average
Avg/Max

outside MPI |\LIJWT1

54.370119% 4562989 %

0.98963

(b) coarray_urite

0.99161

Future Generation Computer Systems 162 (2025) 107472

outside MPI| MPLGet |

Average 60.835330% 39.16467 %

Avg/Max 0.98558 0.97749

(c) coarray_read

Fig. 2. XMP overhead on top of the MPI layer in the FFB_mini benchmark.

XWP call @ impact3d_xmp3rh.pry

mpact3d_xmp3rh.prv

Fig. 3. XMP calls (top) correlated with underlying MPI calls (bottom) in 8-process
execution timelines of the Impact3D benchmark.

view or set of views as a Paraver configuration file, facilitating analysis
repetition, multi-experiment comparisons, or applying the same views
to different applications using timestamped traces, which are openly
accessible and easy to generate [16].

Using the previous Paraver views to illustrate how the tool assists
in gaining insight, and starting with Fig. 4(a), a repetitive pattern of
MPI calls throughout several iterations of the main computing loop
in LULESH benchmark [17] execution with 27 MPI processes can
be observed. The profile in Fig. 4(b) indicates that the program is
engaged in computations almost 90% of the time, with nearly all of
the remaining 10% consumed by MPI_Allreduce, also revealing poor
Load Balance (Avg/Max) of 0.59 during this synchronisation phase. To
understand the cause of this imbalance, it is necessary to examine the
computing phase preceding the synchronisation. Fig. 5(a) shows the
computing phases of the program, with the gradient from light green to
dark blue representing the length of the computations, from shorter to
longer. Centred on the computation before MPI Allreduce, this region is
notably unbalanced, with different processes exhibiting varied colours,
indicating differing durations. Fig. 5(b) displays a histogram correlating
the duration of the unbalanced computing phase with the instructions
count. The scattered area in the centre of the histogram corresponds to
the unbalanced region, and as points move to the right, the colour shifts
from green to blue, indicating that longer computations are associated
with a higher number of instructions. This indicates that the imbalance
in this area is due to work imbalance.

This brief example exemplifies how the tool enables users to nav-
igate through the data, formulate hypotheses, and validate them both
visually and quantitatively, empowering users to understand in detail
the behaviour of their application.

3.1.3. Performance analytics

Traces provide a detailed capture of the application’s execution
that inexperienced users may find difficult to analyse. For this rea-
son, BSC initiated the development of performance analytics tools in
2007 to automatically extract valuable insights from the data. In this
context, BurstClustering employs density-based clustering analysis [18]
to automatically classify computations using a selection of the met-
rics measured (typically hardware counters). This approach allows to
characterise computing phases of the program with distinct perfor-
mance behaviour through a few clusters, revealing trends and exposing
underlying structure.

As clustering is an unsupervised algorithm, correlating the clusters
from different executions may not be easy. Tracking [19] leverages

MPI call @ lulesh 27 bind.orv.az
THREAD 1.

(a) MPI calls over time for the iterative phase

outioe et MPLAecuce = e1 wae et tsna et e

Total 2,415.17 % 259.18 % 17.66 % 3.53% 243 % 2.02%
Average 89.45 % 9.60 % 0.65 % 0.13% 0.09 % 0.07 %
Maximum 99.50 % 16.17 % 1.14% 0.42 % 0.18 % 0.16 %
Minimum 83.27% 0.01 % 0.20 % 0.05 % 0.04 % 0.04 %
StDev 4.12% 4.07 % 0.28 % 0.08 % 0.03 % 0.03 %
Avg/Max 0.90 0.59 0.57 0.31 0.50 0.47

(b) Percentage time profile per MPI call

Fig. 4. MPI views for the LULESH benchmark.

Useful Duration @ lulesh 27 bind.orv.az

THREAD 1.

THREAD

THREAD 1.9

THREAD

THREAD 1.17

THREAD 1.21.

THREAD 1.35. - -

219 us 3

A rrrrrrrrrr o

|
< 54,143.20

] .
89,646.10 125,149 >

(a) Timeline depicting computations duration with gradient focusing on the unbalanced
region

2DH useful duration correlated with @ lulesh 27 bind.prv.az

(b) Histogram correlating the duration of computation regions (from lower to higher du-
ration, left to right) with the corresponding number of instructions (from lower to higher
instructions, indicated by a gradient from green to blue colors)

Fig. 5. Useful computation views for the LULESH benchmark.

movement tracking methods to study the evolution of clusters across
multiple experiments with different settings within the performance
space. This method provides valuable insights into how different setups
influence the program’s performance over time.

For detailed performance evolution, Folding [20] combines instru-
mentation and coarse-grain sampling. This approach allows to describe
very small regions with a high level of detail and minimal overhead,
and then break down the performance of these regions using top-down
models based on hardware counters.

B.J.N. Wylie et al.

DBSCAN (Eps=0.025, MinPoints=10)

T T T T T T T NOiSE +
2.5x108 | —] Cluster1 X
- : Cluster 2
o Cluster 3
£ 8 | | Clustera m
g 2x10 Cluster5 O
S Cluster6 @
b 8 Cluster 7
0 L 1
5 1.5x10 Cluster 8
5] Cluster 9
S 1x108 | B
@ ® (I
£ b 4
5x107 + 4
1 | 1 1 - 1 1
1.6 1.8 2 2.2 2.4 2.6 2.8

IPC

Cluster ID
THREAD 1.1.1

READ 1.16.1

READ 1.19.1

READ 1.2

(b) Distribution of identified clusters over time

Fig. 6. Clustering views for the LULESH benchmark.

These techniques can be applied postmortem but also at runtime. To
this end, Extrae was extended with on-line mechanisms [21] to orches-
trate the use of analytics to expose structure, identify patterns, select
representatives of common behaviour, and overall, intelligently direct
the gathering of data to maximise the amount of useful information
collected while minimising the size of the traces.

During training courses, where time constraints are a consideration,
clustering analysis is predominantly utilised due to the tool’s ease of
use and the quick insight it provides. Fig. 6(a) illustrates the results
of BurstClustering applied to a trace of the LULESH benchmark. The
scatter plot correlates the number of instructions executed on the y-
axis with instructions executed per cycle (IPC) on the x-axis. Clusters
represent the aggregation of all instances of computing phases in the
program that share a similar performance behaviour in terms of these
two metrics.

The plot highlights four main behavioural trends ordered by their
importance in the execution. Cluster 1 (green) executed the highest
number of instructions (topmost), and elongates horizontally, indicat-
ing variability in IPC. Cluster 2 (yellow) is the slowest (leftmost) and
elongates vertically, indicating variability in the number of instructions
executed. It also splits into multiple clusters at the top and the bottom,
highlighting significantly distinct behaviour and outliers. Cluster 3
(red) executes with the highest but variable IPC (rightmost), as in-
dicated by the horizontally elongated shape. Finally, Cluster 4 (dark
green) executes the lowest number of instructions (bottommost). Cor-
relating with Fig. 6(b), which displays the distribution of clusters over
time, we can observe all processes executing computations belonging to
the same cluster, following an SPMD paradigm. In the yellow phase, all
the outliers observed in the scatterplot occur concurrently, indicating
an imbalance between MPI ranks in this region.

A brief characterisation like this is useful because it quickly reveals
structure in the data and provides a meaningful description of the
program’s main computing phases’ behaviour. Moreover, it facilitates
the identification of imbalances by showing clusters with elongated
shapes, and suggests areas of the program that may be interesting to
improve, either because they execute a large number of instructions or
operate at low IPC.

3.1.4. Dimemas
Dimemas [22] is a coarse-grain simulator designed for MPI pro-
grams. It reconstructs the time behaviour of a parallel application

Future Generation Computer Systems 162 (2025) 107472

MPI calls @ Real run

THREAD

THREAD

THREAD

THREAD

THREAD

Fig. 7. Network impact analysis for the GADGET application.

on a machine modelled by a set of performance parameters, offering
accurate predictions of the performance the application would achieve
on the target machine.

The simulator generates trace files that can be analysed with Par-
aver, allowing users to conveniently examine performance issues iden-
tified during a simulation run. The supported target architecture com-
prises a cluster of nodes, potentially heterogeneous and equipped with
CPUs and optionally accelerators. This architecture can be extended to
include multiple heterogeneous clusters connected through a network
and direct connections.

Dimemas simulates communications using a linear performance
model, but also accounts for some non-linear effects like network
conflicts. The tool also allows users to specify different task-to-node
mappings. Through Dimemas’ abstract architectural parameters, users
can analyse the importance of various performance factors and assess
the possible benefits of specific code optimisations.

The main uses of Dimemas include both parametric studies and
what-if analyses. Arguably the most interesting scenario that can be
simulated is the “ideal machine”, modelling instantaneous communica-
tion with zero latency and unlimited bandwidth. This simulation helps
identify the portion of MPI time caused by actual data transfer.

Fig. 7 illustrates comparison through Paraver traces of an original
run (top) and the ideal scenario (bottom) for the GADGET astrophysics
code.’ In these timelines, light blue represents computation, and other
colours correspond to MPI calls. The black region at the end of the ideal
simulation corresponds to the time reduction with instantaneous data
transfer. We can see that even with an instantaneous network not all
the MPI time disappears, and while some MPI calls significantly reduce
their time others maintain the same behaviour. Those that reduce their
weight in the execution are the ones affected by data transfer and would
improve with a faster network. Those that do not reduce their duration
highlight waiting time in MPI caused by imbalances or serialisations.

3.1.5. Efficiency model

With the need to classify the time spent in MPI depending on its
originating cause, and inspired by the simulation of the “ideal machine”,
an efficiency model was developed in 2008 [23]. This model is being
used in most of BSC’s training sessions since 2012 as an easy method
to diagnose the sources of inefficiencies.

The core metric of the model is Parallel Efficiency, that expresses
the percentage of useful time considering the time spent inside the
parallel runtimes (e.g., the MPI library) as parallelisation overhead.
Using Dimemas’ ideal simulation, Parallel Efficiency can be split into
Load Balance, Serialisation Efficiency and Transfer Efficiency, weighting
the factors that generate the time in MPI. The achieved speed-up is not
only related to Parallel Efficiency, but also depends on the Computation
Scaling, originally decomposed into Instructions Efficiency (amount of
work), and Instructions per Cycle (IPC) Efficiency (speed).

9 https://wwwmpa.mpa-garching.mpg.de/gadget/

https://wwwmpa.mpa-garching.mpg.de/gadget/

B.J.N. Wylie et al.

0.9 g Parallel Eff

—&—LB

0.8

y— uLB
0.6

0.5

0 50 100 150 200 250 300 350 400
(a) Parallel Efficiency

1.4 /
i st Global Eff

—&— Parallel Eff
14
Instructions Eff

0.8

0.6 .\'\'\

0.4

—e— IPC Eff

0 50 100 150 200 250 300 350 400
(b) Global Scaling Efficiency

Fig. 8. Efficiency analysis applied to CGPOP benchmark executions with 24 to 360
MPI processes.

Fig. 8 reports the analysis of efficiencies for the CGPOP bench-
mark [24], which exhibits a scaling in the range from 24 to 360
processes. Fig. 8(a) illustrates the Parallel Efficiency for all the scales
as well as its components. The first thing to notice is that the Parallel
Efficiency is low even for the smallest scale (around 0.75 with 24 cores
expressing that 25% of the execution time is spent in MPI). Secondly,
when scaling up, the efficiency degrades to 0.55 with 360 cores. The
main reason for the long time in MPI is poor Load Balance (ratio of
mean to maximum computation time), but the model also reports that
Transfer Efficiency (inherent communication time in the absence of
waiting) becomes increasingly relevant when scaling up.

The reason why the application seems to report a perfect Global
Scaling Efficiency with low Parallel Efficiency is due to IPC improving
with the scale, compensating the Parallel Efficiency loss, as illustrated by
Fig. 8(b). Based on experience, this situation is quite frequent in strong
scaling codes where a large core count usually implies smaller data
blocks that can better benefit from the caches, while communication
and data transfer become more important because of the reduction in
the computation/communication ratio.

The model was originally developed for MPI applications and it was
adopted by the POP CoE where it has been extensively used and ex-
tended to model File Input-Output (IO) Scaling, Clock Frequency Scaling,
and hybrid executions such as MPI+OpenMP and MPI+CUDA [25].

3.2. JSC: Scalasca/Score-P/CUBE toolset

The Scalasca toolset for scalable performance analysis of large-
scale parallel application executions [10] is now considered “pretty
standard” on current HPC systems ranging from the largest leadership
systems (e.g. Frontier, Fugaku, LUMI & Leonardo) down to individual
multicore notebook computers. It uses the Score-P instrumentation and
measurement infrastructure and CUBE utilities and GUI for analysis
report generation, processing and exploration. Automated analysis of
MPI and OpenMP communication and synchronisation can be done
immediately following trace collection via event replay initiated on the
compute nodes and cores allocated to a batch job under control of a

Future Generation Computer Systems 162 (2025) 107472

nexus utility that combines launching execution of both. All compo-
nents are available as open source distributed under a 3-clause BSD
license, and execution traces can additionally be interactively explored
and analysed with the commercial Vampir'® tool.

Application codes for Scalasca analysis are prepared via the Score-P
instrumenter which configures adapters for various measurement in-
terfaces and links associated measurement libraries. Adapters are pro-
vided for MPI and SHMEM process-level parallelism, OpenMP and
POSIX thread-level parallelism, OpenACC, OpenCL, CUDA, HIP and
Kokkos accelerator-based parallelism, MPI-IO and POSIX file I/O ac-
tivity, as well as source-code instrumentation done via compilers or
manually by users. Events from these adapters are timestamped or
combined with counters read by PAPI, PERF or rusage, to be aggre-
gated into call-path profiles and/or accumulated in execution event
trace buffers per thread which are written to disk during execution
finalisation. Instrumenter flags and measurement configuration via en-
vironment variables provide flexibility for customisation and refine-
ment.

Fig. 9 shows Scalasca/CUBE presentation of a Score-P profile sum-
mary report collected from development version 7.2 of Quantum-
Espresso [26] using MPI with OpenACC+CUDAFortran hybrid paral-
lelisation executed on 108 quad-A100 GPU-accelerated compute nodes
of JUWELS-Booster. The Score-P instrumenter orchestrated the NVHPC
compilers’ instrumentation of application functions, OpenACC con-
structs from the NVHPC runtime, CUDA events via the CUPTI interface,
and MPI library routines. For measurements using the instrumented
executable, both OpenACC and CUDA events from both CPU hosts and
GPU devices were enabled, since libraries exploiting CUDA(Fortran)
were also employed.

The open-source HemeLB software!! developed by University Col-
lege London and others within the EU HPC CoE for Computational
Biomedicine (CompBioMed) is their flagship solver for high-performance
parallel lattice-Boltzmann simulations of large-scale three-dimensional
hemodynamic flow in vascular geometries. It supports a range of
collision kernels and boundary conditions, and is optimised for sparse,
patient-specific geometries. HemeLB has traditionally been used to
model cerebral bloodflow, and is now being applied to simulating the
fully-coupled human arterial and venous trees with high fidelity [27].

As part of a series of POP performance assessments of HemeLB on
Archer, BlueWaters and JUWELS supercomputers, attention turned to
SuperMUC-NG at LRZ [28]. It was built with Intel 19.0.4.243 compilers
and MPI library, configured to use MPI-3 shared-memory windows
within each compute node to reduce memory requirements when load-
ing the initial lattice data. For scalability testing, a cerebral arterial
“circle of Willis” geometry dataset of 21.15 GiB was used (correspond-
ing to a lattice spacing of approximately 6.4 microns). After reading
and distributing this dataset, the time to simulate blood flow for 5000
lattice time steps (without writing intermediate or final state) was
recorded for this strong scaling benchmark.

48 MPI processes were executed on each SuperMUC-NG compute
node (i.e., one per core, not using additional hardware threads per core)
with processes bound to cores and socket-local memory. Executions ran
with 864 to 6,144 MPI processes (on 18 to 128 ‘fat’ compute nodes with
768 GiB), whereas executions with 12,288 and more MPI processes ran
on regular ‘thin’ compute nodes (with 96 GB memory).

3.2.1. Execution and scaling efficiencies

The CUBE metric panel makes a large number of measured and
derived performance metrics accessible via a hierarchical tree. For
example, expanding the Time tree distinguishes execution time of at-
tached devices from that of the CPUs, and CPU execution time is further
split into MPI, OpenACC and CUDA components, before these are

10 https://www.vampir.eu
11 https://www.hemelb.org/

https://www.vampir.eu
https://www.hemelb.org/

B.J.N. Wylie et al.

Future Generation Computer Systems 162 (2025) 107472

a
Flle Display Plugins Help
Absolute ~ | Absolute ~ | | Peer percent -0
&
[Metric tree [l calltree | [E] Flat tree I System tree | [Sunburst E §
~ [J 0.000 Time (sec) ~| [~ 00917 phx) |~ O - machine juwelsbooster BBl 100.0 156l =
~ [J 0.000 Execunon ~ [11.157 MAIN_ (2 hidden children) v L= node jwb0546.juwels e " . T
o omputation| 42936.278 MEASUREMENT OFF ’ gg ggé mg: Fﬁ*::ﬁ? L =
- 0o - [0.242 do_phonon_ (2 hidden children) » :
> O 3 5558 Management < O 4.413 phasct_ (1 hidden child) » I8 79.893 MPI Rank 2 | 90.0 1419 &
» O 5927.959 Synchronization ~ [0 801.431 solve_linter_ (15 hidden children) 67.384 I | | 1327 B
» [444.135 Communication ~ [J 435.470 response_kernels_sternheimer_kernel_ (4 hid -~ 0 -no Juwels 2.0 g
» O 0.000 File /O } [8537.917 orthogonalize_ > 97,321 MPI Rank 4 X S,
» [J 0.000 Request Handling » O 7782.321 cgsolve_all_ » [83.170 MPI Rank 5 @
~ [0 0.000 OpenACC » [1182.691 buffers_get_buffer_ » [l 98.894 MPI Rank 6 700
[0.000 Initialization and Finalizatic » [464.266 incdrhosci_ 84.081 MPI Rank 7 : L1os7| | ©
~ [0 0.000 Data » [413.296 apply_dpot_mod_apply_dpot_bands_ ~ O - node jwh0556.juwels 3
O 939.619 Management » [189.616 buffers_save_buffer » 79 78 MBIRankie 00 2
0 468. 185 Memory transfer » O 111.352 acc_update@response_kernels.f90:184 94 MPI R 9 s -
W 66 ait (Synchronizatio » O 0.045 mp_mp_sum_i1 v g ank 10
~ O 0.000 ompu(e » [0.045 acc_data_enter@response_kernels.f90:142 » [82.648 MPI Rank 11 50.0
O 154.460 Management 0.000 acc_data_exit@response_kernels.{90:281 ~ L .n 9%9 Zlgvgﬁ&%{uwflfz g
|:| 426 749 Kerne! launches » [3027.226 localdos_ » [99. an
» O 134,622 dvapsi s,) & 83.118 MPI Rank 13 w00 About CubeGUI-4.8.0
|c|| ync ronization » [476.314 buffers_get_buffer_ » 79-888 MPI Rank 14 i
-0 5000 CUDA. » [414.524 dv_of_drho_lr_dv_of_drho_
[J 0.000 General management » O 332.553 efermi_shifi_ef_shift_wfc_ - O - node jwi Juwels 460
g 929,472 Memory management + [87.130 buffers_save_buffer_ > m 97,658 MPI Rank 16 o Ccyoe
» [0.010 acc_data_enter@solve_linter.f90:178 » @ 83.517 MPI Rank 17 1
[0.000 acc_data_exit@solve_linter.i90:627 » [99.733 MPI Rank 18 200 scalasca
O 664 572 Overhead » [J 5318.198 drhodv_ » [83.251 MPI Rank 19 T o
~ [0.000 Device » [5706.154 initialize_ph_ ~ O - node jwb0806.juwels ' JUL|CH
S50 CUDA Kerne » O 1754.152 dynmatrix_new_ + Wie02CelMBlRaniey 10.0 J
ed Visits (occ) ~ [J 0.000 KERNELS 67.816 MPI R 0 Forschungszentrum
» @ 4543e+11 Bytes transferred (bytes) [J 787.788 regular_fft<25u, 5u, 32u, 8u, (padding_t)1, (twiddle_t)0 ’ - an
» O 0 MPI file operations (occ) [736.984 composite_2way_fft<72u, 8u, 16u, 6u, (padding_t)T, (tv » [@ 83.913 MPI Rank 23 00l
» [2649.894 Computational imbalance (sec) |;| 725 678 composite_2way_fft<90u, 9u, 8u, 9u, (padding_1)1, (twi ~ O - node jwb0807 juwels 2
89366.105 Idle GPUs time (sec) regular_fft<3u, 3u, 256 » [l 98.497 MPI Rank 24
i » MBS 700 Al Rank Box Plot (s Violin Plot |~

b
1.036e5]

<
0.000

Visited (432 elements) ~ [«
DO]

1
Visited (432 elements) ‘

‘
8.84764 (85.369%) ‘u.ooo 612971 (0.693%)

8.847e4| [0.000

Fig. 9. Scalasca/CUBE analysis report explorer presentation of Score-P profile from QuantumEspresso execution on 108 quad-A100 GPU-accelerated nodes of JUWELS-Booster
with 432 MPI processes. From the hierarchy of metrics in the left panel CUDA kernel time for GPU device computation and CPU metrics for computation, OpenACC (data and
compute) wait synchronisation and CUDA synchronisation time are selected, and this aggregate metric shown in panels to the right. From the call-tree hierarchy in the middle
panel, the cutlass: :Kernel taking the fifth longest GPU execution time has been selected, and the time for this callpath is presented (as percentage of the maximal peer value)
in the right panel for the MPI/GPU ranks. Next to each numeric value in the trees is a small box coloured from white through yellow and orange to red according to its percentage
of the total metric value to facilitate identification of those which are most significant. Also shown are a violin plot of the distribution of metric values and a 2D topology map of
values (compute nodes increase going down and the GPU index on each node is horizontal). These displays clearly show that most GPUs are in two distinct groups and that four
of the GPUs (for MPI process ranks 3,9,15,21) take one-third less time than those that take longest, which can be explained by the fact that they have one-fifth fewer instances

(visits).

Table 2
HemeLB application execution efficiency and scaling relative to 1,152 processes on 24 compute nodes of SuperMUC-NG.
Compute nodes 24 32 48 64 96 128 192 256 384 512 768 1024 1536 2048 3072 4096 6452
Processes 1152 1536 2304 3072 4608 6144 9216 12288 18432 24576 36864 49152 73728 98304 147456 196608 309696
Global scaling efficiency 079 079 084 080 082 075 073 072 073 074 068 068 065 062 057 045
- Parallel efficiency 079 080 087 083 086 080 075 074 074 077 071 072 070 072 070 073
- - Load balance efficiency 079 080 088 084 086 0.80 075 074 075 078 072 074 072 074 073 080
- - Communication efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.97 0.96 0.92
- Computation scaling 100 099 096 096 095 093 098 098 098 096 096 094 093 087 081067
- - Instructions scaling 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.94 0.89 0.79 0.67. 0.45
--IPC scaling 1.00 0.99 0.96 0.96 0.95 0.93 0.98 0.98 0.99 0.98 0.99 1.00 1.04 alsll il 1.36
IPC 1411 1395 1.353 1.355 1.342 1.316 1377 1387 1396 1.383 1.390 1417 1473 1566 1.704 1.919
Key: <065 <0.75 <0.85 <095 <1.00 =1.00

Legend for hierarchy of efficiencies:

Global scaling efficiency is the product of parallel efficiency and computation scaling.
Parallel efficiency is the ratio of mean computation time to total runtime of all processes.
Load balance efficiency is the mean/maximum ratio of computation time outside of MPI.
Communication efficiency is the ratio of maximum computation time to total runtime.
Serialisation efficiency is estimated from idle time within communications where no data is transferred.
Transfer efficiency relates to essential time spent in data transfers (where there is no waiting).
Computation scaling is the relative total time in computation (outside of MPI).
Instructions scaling is the relative total number of instructions executed (outside of MPI).
IPC scaling is the relative value of instructions executed (outside of MPI) per CPU cycle.
(Scaling efficiencies are relative to a serial execution or the smallest parallel execution configuration.)

further subdivided. While this is a natural organisation of these metrics
that can be explored, the sheer number of available metrics can initially
be overwhelming. As part of the collaboration with BSC within the POP
CoE, the efficiency metrics defined there [29] have been incorporated
within CUBE where they provide a convenient characterisation of the
execution measurement that directs investigation of specific ineffi-
ciencies. While by default the entire execution is characterised, it is
generally more appropriate to select a specific call-path as focus of this
analysis which is the key execution phase. CUBE supports interactive
exploration of call-paths and their evaluation. With the efficiencies
and related metric values from a set of measurements with increasing
numbers of processes (or threads), additional scaling efficiencies can be
determined.

Table 2 summarises execution efficiencies and scalability of HemeLB
executed on SuperMUC-NG with up to 6,452 compute nodes (309,696
MPI processes). Computational instructions retired per clock cycle
(IPC) was a reasonable 1.9, compared to 1.4 for the smaller execu-
tion configurations, suggesting better cache efficiency as the lattice
partitions get smaller. Perfect instruction scaling up to 768 compute
nodes thereafter deteriorates as there is more processing of lattice
block boundaries compared to their interiors. Since these two effects
counteract each other, very good computation scaling above 0.87 is
sustained. Efficient non-blocking communication to exchange fluid
particles between neighbouring lattice blocks maintains excellent com-
munication efficiency above 0.97. The most significant inefficiency at
all scales tested is load balance, generally around 0.80 but dropping to

B.J.N. Wylie et al.

0.72 in some larger execution configurations. While this is still fairly
good, it presents the largest opportunity for performance improvement
and warrants more in-depth investigation.

3.3. Complementarity and development of BSC & JSC tools

The POP efficiency model implemented within BSC and JSC tools
helps ensure that performance analysts can relate their observations
using a common terminology, providing a convenient starting point
for more in-depth investigations best suited to one or the other tool,
and facilitating switching between them if necessary to address dis-
tinct aspects. Their approaches for specification, customisation and
refinement of instrumentation, measurement and analysis are quite
complementary.

Score-P measurements require prior instrumentation of applications,
however, its call-path profiles provide an initial starting point for
selective refinement prior to trace collection. Such profiles may already
contain sufficient information to diagnose problems, particularly when
there is no need to distinguish communication efficiency factors. By
scoring the profiles according to the events they aggregate, indicative
estimates of required trace (buffer and file) sizes are possible, and their
content can be optimised by various instrumentation and measurement
customisation capabilities prior to eventual trace collection. Scalasca
automated analysis of the traces conveniently determines the additional
inefficiency metrics required to calculate the additional communication
efficiency factors. The inherently parallel implementation of this analy-
sis also enables it to be applied to much larger traces, however, it relies
on strict semantics for recorded events.

On the other hand, the semantic-free nature of Extrae traces enables
much more flexible user-driven analysis with Paraver which can be
applied to a wider set of trace measurements including those which
are incomplete. Extrae also conveniently avoids the need for initial
instrumentation of application executables, and rather than including
user functions only captures events of the parallel runtime by default.
Where traces would still be prohibitively voluminous from larger and
longer executions, more compact traces can be obtained by switching
to a mode that periodically switches sets of hardware counters.

While MPI message-passing and OpenMP multi-threading are well-
established parallel programming paradigms, they continue to be ex-
tended and support by tools has to keep up. Often this depends
on the associated compilers, runtimes and libraries. Attached or co-
located accelerator devices are increasingly common, and a range
of programming and offload mechanisms are available which need
to be supported. Along with OpenMP, OpenACC, OpenCL, there are
proprietary CUDA, HIP/ROCm, SYCL and others, all with different
measurement interfaces and execution characteristics. As BSC and JSC
tools develop measurement support for these additional paradigms,
corresponding adaptation and extension of the analysis and efficiency
model is required.

Close interaction with other tools and application developers at
training workshops and within the context of JLESC and VI-HPS has
facilitated targeted refinement of our tools and methodology.

4. Training

To support people interested in learning about parallel performance
analysis tools and their use to understand and improve the execution
performance of their parallel applications, we have developed a range
of training material which is employed in a variety of training formats
serving distinct user profiles. Specific lessons learned from each are
included here, with more general aspects discussed in the next section.

4.1. Tutorials
Tutorials of a full-day (6 or 7 h) or half-day (3 or 3.5 h) dura-

tions have been regularly selected and offered at the foremost HPC
conferences, the International Supercomputing Conference (ISC) High

Future Generation Computer Systems 162 (2025) 107472

Performance annually in Germany and the International Conference for
HPC, Networking, Storage and Analysis (SC) annually in USA.

Half-day tutorials offering an overview of the variety of tools avail-
able Supporting performance analysis and optimisation on extreme-scale
computer systems [30] have been complemented by full-day hands-on
training in Hands-on practical hybrid parallel application performance
engineering with core VI-HPS tools centred on the Score-P instrumen-
tation and measurement infrastructure with complementary analy-
ses provided by Scalasca/CUBE, TAU/ParaProf/PerfExplorer & Vam-
pir [31]. (The Periscope Tuning Framework [32] was also sometimes
included [33].) For half-day versions of this tutorial where it was
impractical to include hands-on activity, demonstrations using the tools
were substituted.

An additional half-day hands-on tutorial Determining parallel applica-
tion execution efficiency and scaling using the POP methodology has also
been offered at ISC-HPC [34,35], concentrating on analyses derived
with BSC (Paraver) and JSC (Scalasca/CUBE) toolsets from perfor-
mance measurements of actual HPC application executions. Tutorial
participants engaged with the tools via exercises on their own note-
book computers to prepare them to locate and diagnose efficiency and
scalability issues of their own parallel application codes.

Due to the time constraints and often limiting network infrastruc-
ture for tutorials held at conferences, exercises are restricted to pro-
vided mini-application/benchmark codes such as NAS Parallel Bench-
mark (NPB) [36] BT-MZ using hybrid MPI+OMP parallelisation. Small
problem configurations can be executed interactively in a virtual ma-
chine running on participants’ notebook computers or remotely in an
AWS cloud instance, or larger problem configurations executed via
the batch system on one or two compute nodes of an HPC cluster at
JSC with provided training accounts. In response to increasing interest
in use of GPU-accelerated computing, recent hands-on tutorials have
progressed to using an MPI+CUDA parallelisation of the TeaLeaf
code from the UK Mini-App Consortium'?> run on JUWELS-Booster
quad-A100 GPU nodes.

Another commonly used benchmark is LULESH [17] that stresses
compiler vectorisation, OpenMP overheads and on-node parallelism. It
offers several benefits, including its small code size, easy compilation,
and support for MPI, OpenMP, and their hybrid combination, CUDA,
OpenACC, and OpenCL versions. This versatility allows adaptation to
the diverse hardware platforms available in training courses. There is
a restriction in running LULESH: the number of domains (equal to the
number of MPI tasks) must always be the cube of a natural number.
However, this restriction can actually be considered a benefit for ed-
ucational purposes. Since machines are typically dual socket with an
even number of cores per socket, running a cube number or processes,
for example 27, results in an uneven distribution of processes per
socket, causing a degree of imbalance. This restriction allows analysis of
this effect using tools and provides an opportunity to experiment with
system process mapping options to reconfigure the pinning of processes
to cores, altering resource sharing and analysing the effects.

Experience with the use of ISO/OVA images running in a VM on
notebook computers varied widely according to notebook capability
and was constrained to very small execution configurations of typically
four MPI processes each with 2 or 3 OpenMP threads. Even this results
in CPU over-subscription that is not recommended for production HPC
systems with associated high run-to-run and within-run variability that
are not ideal for parallel performance analysis exercises. While those
undesirable aspects are avoided using a dedicated remote HPC system,
access has become increasingly complicated with the need for multi-
factor authentication, installation of an SSH+X11 client for those using
Windows OS on their notebook computers, and generally sluggish
responsiveness of remote X11-based graphical tools. Remote access to
compute resources in AWS cloud instances can be done conveniently

12 https://uk-mac.github.io

https://uk-mac.github.io

B.J.N. Wylie et al.

via a standard web browser, with web protocols improving responsive-
ness of graphical tools, however, the expense of dedicated instances
and variability otherwise were generally unsatisfactory, particularly for
performance measurements of multi-node (accelerated) executions.

In the last couple of years, the best setup has been JupyterLab with
Xpra remote desktop [37], providing remote access via web browsers
to dedicated training accounts on JSC accelerated compute nodes for
various hands-on tutorials (often running concurrently and sharing a
reserved machine partition). Open OnDemand [38] interactive desktop
provides a similar setup for other HPC systems (such as Fugaku at R-CCS
and Delta at NCSA).

4.2. Tuning workshops

VI-HPS Tuning Workshops are distinguished from tutorials in vari-
ous ways. They are hosted by HPC centres using their local HPC cluster
or supercomputer system, often primarily for their own user community
of students and application developers. They run over several (typically
three to five consecutive) days, providing more time to cover a wider
range of tools, often including as guests proprietary tools recommended
by the system vendor (e.g. Cray/HPE, IBM, Intel or Nvidia) or less
mature locally-developed tools for experimentation. In particular, after
the usual tutorial-style tool introduction and hands-on exercise with
a benchmark/mini-app, substantial time is reserved for participants
to then apply the presented tools to their own application codes,
with coaching and guidance provided by the instructors and classroom
assistants.

Well-prepared participants work in small teams with a range of
simple/short testcases to more complex and longer/larger execution
testcases, such that they can rapidly experiment with various instru-
mentation and measurement options before progressing to more rep-
resentative and interesting cases (which might run overnight). Partici-
pants (such as students) without their own application code, are given
access to a variety of benchmark/mini-apps they can work with, or they
may prefer to observe other participants work on their applications.

Often a couple of related tools are introduced each morning, with
the entire afternoon for their own work, and a review of participants’
experience (issues encountered and resolved, insights obtained and
future investigations) concluding the day. By the end of the workshop
participants have had the opportunity to try out and compare a range
of tools and consider how they suit their application needs. While it is
also possible to make small changes to source code or build and run
configurations to investigate optimisation opportunities during such
workshops, most analysis and optimisation generally occurs afterwards.

The first VI-HPS Tuning Workshop was organised and hosted by
RWTH Aachen in March 2008, with workshop frequency increasing to
three or four each year. Workshops have been hosted by HPC centres
around the world and not always VI-HPS partner institutions, on a
multitude of different systems and a wide variety of VI-HPS and guest
tools included. Particularly distinguished workshops hosted by JLESC
partners used JUQUEEN IBM BlueGene/Q at JSC, Fujitsu Kei computer
with SPARC64 processors at RIKEN AICS, MareNostrum4 and its GPU-
accelerated CTE-Power module at BSC, and TACC Stampede2 with Intel
Xeon Phi processors for a workshop at UTK-ICL.

After 33 VI-HPS Tuning Workshops held in person, in 2020 the
COVID19 virus pandemic forced all training to rapidly move online via
a variety of videoconferencing solutions (some much less functional or
suitable than others). Despite initial trepidation about the change of for-
mat and its impact on close interaction and engagement with workshop
participants in hands-on sessions, it was quickly observed that breakout
rooms and participant’s sharing their screens generally worked well.
Attendance of workshops remained high, with participants joining from
countries who would not have otherwise been able to travel to attend
events in person. While the timezone difference made participation
from other continents inconvenient, it was largely compensated by the

10

Future Generation Computer Systems 162 (2025) 107472

provision of session recordings that participants could refer to when
suitable for them.

The nine virtual VI-HPS Tuning Workshops held to date also in-
cluded the first featuring performance analysis of applications running
on GPU accelerators (first using Marconil00 at CINECA, then JUWELS-
Booster at JSC). 2024 returned to in-person VI-HPS Tuning Workshops
again, and the first hybrid VI-HPS Tuning Workshop split between
RWTH Aachen and TU Dresden.

Multi-day events (typically lasting a full week) dedicated to ap-
plication performance analysis, optimisation and tuning, often with
particular emphasis on scaling to large fractions of HPC supercom-
puter systems have also become established, particularly as JSC tar-
geted extreme-scaling to its entire BlueGene systems (JUBL, JUGENE
& JUQUEEN) [39] and on subsequent modular supercomputers includ-
ing the current flagship system JUWELS Cluster+Booster. Such events
provide more focused engagement with application development teams
geared to the considerable specific challenges of scaling their codes on
particular supercomputer systems.

4.3. Staggered workshop series

With travel for both workshop participants and instructors not
possible in 2021 due to the COVID19 pandemic, we had to adjust plans
for a VI-HPS Tuning Workshop to be hosted by Durham University,
UK. Instead of simply having a virtual version of the usual in-person
workshop, we transformed it into a series of one-day sessions spread
over an entire year, with the usual full day of tools instruction and
hands-on assistance per month on a regular cadence. While such an
arrangement is not practical for participants of in-person workshops,
who would need to travel frequently, for a virtual workshop this offered
many possible benefits that were worth investigating further.

On registration participants received access to the DiIRAC COSMA/
DINE cluster to prepare their application code and testcase(s) in ad-
vance of the workshop start, and could continue to use it throughout
the year. Teamwork within application code teams was strongly en-
couraged, both when registering for the workshop series and via Slack
channels established for interaction with instructors and other partic-
ipants. Over a dozen international teams and also many individuals
participated, introducing their application codes in the initial kick-
off session and providing updates in subsequent sessions, including
the concluding wrap-up session of the workshop. The four-week gap
between sessions allowed plenty of time for participants to both in-
vestigate use of the tools with their applications and try out potential
optimisations suggested by the analysts, with some significant successes
reported. Unfortunately, the length of the gap between sessions resulted
in drop off of attendance as the series progressed and the need for ex-
tensive recaps of previous sessions (despite recordings being available),
while many participants were only active on the presentation days [40].

For the 2023 repetition of this workshop series, a weekly cadence
of five full-day sessions was chosen that featured a smaller set of
performance tools. This compressed format has been found to be more
effective, with sustained engagement throughout, and was therefore
repeated in 2024. A hybrid format was offered where participants were
encouraged to attend in-person. While the in-person attendees reported
benefits from close engagement with instructors and interaction with
classmates, most participants found it more practical and convenient
to join remotely.

4.4. Workshops by & for under-represented groups in HPC

Participation of women at training events has varied considerably
from event to event but generally reflected their low representation
in the HPC community. While women are relatively well represented
within VI-HPS, the POP CoE and associated tools projects, our teams of
instructors provided from organising institutions have often contained
only a single instructrix or sometimes none at all.

B.J.N. Wylie et al.

Women within the framework of the POP CoE were therefore in-
spired to promote and increase the participation of women in training,
and two dedicated workshops have been organised. The main target
was to provide training opportunities where all of the instructors
presenting and their class assistants were women. Early registration
favoured women and other under-represented groups in HPC, however,
available places in the workshops were filled by others who applied to
be on a waiting list: whereas the first workshop was almost exclusively
women, men constituted around a quarter of the participants (and
assistants) in the follow-up.

This kind of initiative has multiple positive impacts, from more
straightforward to less obvious but not less important. The most direct
one is more women attending technical training and thereby increasing
their technical knowledge and HPC skills. But also offering priority over
male colleagues who outnumber them to level out the field. Another
positive impact is the opportunity for mid-career professional women
to participate as trainers and gain invaluable experience.

These might be the most obvious, but we also obtain other more
subtle benefits: to increase visibility of women in technical activities
providing training of the same level and quality as those given by male
trainers. It is essential to provide these role models to young women
and the entire community, demonstrating that women can provide
training in this area of the highest technical quality.

The experience has been a success and we were able to attract a
similar number of attendees for these events as for the regular training
while ensuring the same technical level. The feedback collected from
the attendees was very positive. It can be summarised in two aspects:
on one hand, the supportive atmosphere where they feel free to ask
questions and make mistakes, and on the other hand, the empowerment
of attending an event where the leading experts were women. Also,
the feedback from the instructors and assistants illustrated their pro-
fessional growth, motivating us to continue organising these training
events in the future.

Due to their scheduling during the pandemic, these first two work-
shops have been organised online, which meant that we largely missed
the networking aspect of such an event. We are planning to offer an
in-person workshop in future where this will be addressed.

Experience from more workshops (and tutorials) is needed to evalu-
ate the real impact and benefits of such events while monitoring the risk
that having a specific event for women may have an undesirable side-
effect of reducing their attendance to the unrestricted training events.
Furthermore, they should not be considered second-class or remedial
training that is less valuable than non-segregated training events which
benefit from the full community diversity.

5. Discussion

Appropriate training with performance tools is needed for the entire
spectrum of users of HPC computer systems, primarily those developing
their own applications (who can most readily modify them as neces-
sary) but also those running applications developed by others (where
runtime configuration parameters can be adjusted). A variety of train-
ing needs have been addressed with distinct training formats, trading
duration for depth of coverage and exploiting format opportunities
to the greatest possible extent. As well as specific lessons learnt and
already discussed for each of the training formats, some generic lessons
can also be identified.

Training that showcases capabilities of a variety of tools provides
benefits for both those just getting started as well as application de-
velopers with more advanced needs. Many tools have complex func-
tionality to adapt to user and application requirements, which poses
challenges in recommending a single tool or toolset as universal starting
point for all. Trying out tools with participants’ own application codes,
or failing that with prepared examples, is essential for understanding
and familiarising with the usage and analysis results of the tools.

11

Future Generation Computer Systems 162 (2025) 107472

While novices benefit most from introductory content focused on
provided simple examples, particularly when they have yet to develop
application code of their own, intermediate and advanced training is
most productive when participants work with their own application
codes. As well as ensuring that the code runs correctly on whatever
computer system is being employed, the testcase configurations should
be suitably defined to allow short executions on a few compute nodes
as well as realistic large-scale executions that may require much longer
(but can be scheduled to run overnight). Participants working together
as code-teams are particularly productive.

Short tutorials are often sufficient to learn basic usage of perfor-
mance tools and techniques, whereas comprehensive and advanced
use is best spread over several days, allowing familiarisation with
initial concepts before progressing to more advanced and less common
aspects. Training provided in person has advantages but also drawbacks
compared to virtual alternatives that are still being debated.

In-person training supports close interaction between instructors/
assistants and participants, but has additional financial and logistics
demands (particularly travel and accommodation) that can limit ac-
cessibility, whereas virtual training (particularly when recorded) can
more conveniently be widely accessed but limits interaction and en-
gagement. Virtual training also reduces the need to have training on
consecutive days, with gap days or multi-week/multi-month spread
all possible, so participants can make their own progress between
scheduled instruction.

Hybrid training delivery combining both in-person and virtual as-
pects is starting to be offered, however, it requires adequate resourcing
which essentially combines two separate concurrent workshops. There
are additional organisational demands for live-streaming while catering
for in-person participants. Instructors and assistants are expected to
assist remote participants without neglecting those physically present
in the classroom, such that all have an acceptable experience.

In practice, remote training participants have generally been found
to be more looking for a general overview of tools’ capabilities and less
ready to immediately benefit from practical application of the tools.
They are therefore able to selectively drop out of sessions dedicated
to trying out and applying tools to participants’ own codes, allowing
instructors and assistants to dedicate their time accordingly.

Recordings of presentation sessions are valued by those who were
unable to attend them, as well as allowing those who joined them to
recap on details presented in following days and weeks. With recording
typically organised by the hosts of the training events, and made
available via a variety of mechanisms (some licensed only for regis-
tered participants), it makes it increasingly challenging to maintain an
up-to-date archive of recordings accessible to the wider community.

Finally, it is worth noting that tools developers greatly value the
opportunities provided in training events to directly observe how their
tools are employed by a variety of users with diverse application
codes and receive immediate feedback. As well as pinpointing problem-
atic aspects, it allows rapid pivoting to jointly investigate alternative
approaches and try out newly developed functionality.

6. Conclusion

Over more than fifteen years, parallel performance measurement
and analysis training offered by the developers of the Scalasca and
Paraver toolsets has adapted to evolving requirements, such as gov-
erned by the recent pandemic and changing application developer
needs, and specifically to address under-represented groups in HPC
such as women. Joint training events, based on common method-
ology with complementary tools, have been particularly productive
and well received. We expect to continue this proven approach to
the challenges of the exa-scale era, via the now established Centre of
Excellence for HPC Applications Performance Optimisation and Produc-
tivity (POP) and Virtual Institute-High Productivity Supercomputing
(VI-HPS), and supported by the Joint Laboratory for Extreme-Scale
Computing (JLESC).

B.J.N. Wylie et al.
CRediT authorship contribution statement

Brian J.N. Wylie: Writing — review & editing, Writing — origi-
nal draft, Software, Project administration, Methodology, Investiga-
tion, Funding acquisition, Conceptualization. Judit Giménez: Writing
- review & editing, Writing — original draft, Software, Methodology.
Christian Feld: Software. Markus Geimer: Software. German Llort:
Writing — original draft, Software. Sandra Mendez: Writing — review &
editing. Estanislao Mercadal: Writing — original draft, Software. Anke
Visser: Software. Marta Garcia-Gasulla: Writing — review & editing,
Methodology.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Brian Wylie reports a relationship with Association for Computing
Machinery that includes: speaking and lecture fees and travel reim-
bursement. Brian Wylie reports a relationship with IEEE that includes:
speaking and lecture fees and travel reimbursement. Brian Wylie re-
ports a relationship with ISC Group that includes: board membership.
If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability
The authors do not have permission to share data.
Acknowledgements

This work was partially supported by JLESC project Developer tools
for porting and tuning parallel applications on extreme-scale parallel systems
also involving Itaru Kitayama, Chigusa Kobayashi, Hitoshi Murai and
Miwako Tsuji (RIKEN R-CCS), and Anthony Danalis and Heike Jagode
(UTK-ICL).

Our BSC and JSC performance tools are separately developed and
maintained as open-source by many of our colleagues who are also
active in our training activities, and have been funded by the European
Commission’s EuroHPC Joint Undertaking, BMBF, DFG and Helmholtz
Gemeinschaft in Germany, and USA Dept of Energy.

Our performance measurement and analysis methodology was jointly
developed with our partners from IT4Innovations, NAG Ltd, RWTH
Aachen Universitat, Universitat Stuttgart (HLRS), and Université de
Versailles Saint-Quentin (UVSQ) in the HPC Centre of Excellence Per-
formance Optimisation and Productivity (POP CoE) funded by the
European Commission Horizon programmes (grants 676553, 824080
and 101143931).

References

[1] G. Cameron, B.J.N. Wylie, D. McArthur, PARAMICS - Moving vehicles on the
Connection Machine, in: Proceedings of the 1994 ACM/IEEE Conference on
Supercomputing (Washington, DC, USA), 1994, pp. 291-300, http://dx.doi.org/
10.1109/SUPERC.1994.344292.

G. Wilson, Teaching Tech Together: How to Create and Deliver Lessons That
Work and Build a Teaching Community Around Them, Taylor & Francis, ISBN:
978-0-367-35328-5, 2019, [Online]. Available: http://teachtogether.tech/.

HPC Centres of Excellence Council (HPC?), Centres of Excellence for HPC
Applications, [Online]. Available: https://www.hpccoe.eu/eu-hpc-centres-of-
excellence2/.

XcalableMP Handbook, 2018,
handbook/.

H. Murai, M. Nakao, M. Sato, XcalableMP Programming Model and Language,
Springer, Singapore, 2021, http://dx.doi.org/10.1007/978-981-15-7683-6_1.

J. Lee, M. Sato, Implementation and performance evaluation of XcalableMP:
A parallel programming language for distributed memory systems, in: 39th
International Conference on Parallel Processing Workshops, ICPP, San Diego,
California, USA, 2010, pp. 413-420, http://dx.doi.org/10.1109/ICPPW.2010.62.

[2]

[3]

[4] [Online]. Available: http://xcalablemp.org/

[5]

[6]

12

[7]

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Future Generation Computer Systems 162 (2025) 107472

M. Tsuji, M. Sato, M.R. Hugues, S.G. Petiton, Multiple-SPMD programming
environment based on PGAS and workflow toward post-petascale computing, in:
42nd International Conference on Parallel Processing, ICPP, Lyon, France, 2013,
pp. 480-485, http://dx.doi.org/10.1109/1CPP.2013.58.

V. Pillet, J. Labarta, T. Cortes, S. Girona, PARAVER: A Tool to Visualize and
Analyze Parallel Code, Universitat Politecnica de Catalunya, 1995, RR-95/03.
Barcelona Supercomputing Center — Performance Tools, 2023, [Online].
Available: http://tools.bsc.es.

M. Geimer, F. Wolf, B.J.N. Wylie, E. Abraham, D. Becker, B. Mohr, The Scalasca
performance toolset architecture, Concurr. Comput.: Pract. Exper. 22 (6) (2010)
702-719, http://dx.doi.org/10.1002/cpe.1556.

A. Kniipfer C. Rossel, D. an Mey, S. Biersdorf, K. Diethelm, D. Eschweiler, M.
Geimer, M. Gerndt, D. Lorenz, A. Malony, W.E. Nagel, Y. Oleynik, P. Philippen,
P. Saviankou, D. Schmidl, S. Shende, R. Tschiiter, M. Wagner, B. Wesarg,
F.Wolf, Score-P: A joint performance measurement run-time infrastructure for
Periscope, Scalasca, TAU, and Vampir, in: H. Brunst, M. Miiller, W. Nagel,
M. Resch (Eds.), Tools for High Performance Computing 2011, Springer, 2011,
http://dx.doi.org/10.1007/978-3-642-31476-6_7.

Innovative Computing Laboratory, University of Tennessee, Performance Appli-
cation Programming Interface (PAPI), 2023, [Online]. Available: https://icl.utk.
edu/papi.

Virtual Institute — High Productivity Supercomputing, VI-HPS Tools Guide, 2023,
[Online]. Available: http://www.vi-hps.org/tools/cms/upload/material/general/
ToolsGuide.pdf.

Barcelona Supercomputing Center — Performance Tools, Extrae, 2023, [Online].
Available: http://tools.bsc.es/extrae.

Barcelona Supercomputing Center — Performance Tools, Paraver, 2023, [Online].
Available: http://tools.bsc.es/paraver.

Barcelona Supercomputing Center — Performance Tools, Paraver - tracefile
description, 2023, [Online]. Available: https://tools.bsc.es/doc/1370.pdf.

I. Karlin, J. Keasler, R. Neely, LULESH 2.0 updates and changes, 2013, LLNL-
TR-641973, Livermore, CA, USA, [Online]. Available: https://asc.llnl.gov/codes/
proxy-apps/lulesh.

J. Gonzélez, J. Giménez, J. Labarta, Automatic detection of parallel applications
computation phases, in: Proceedings of the 23rd IEEE International Parallel
and Distributed Processing Symposium, IPDPS, 2009, http://dx.doi.org/10.1109/
IPDPS.2009.5161027.

G. Llort, H. Servat, J. Gonzalez, J. Giménez, J. Labarta, On the usefulness of
object tracking techniques in performance analysis, in: Proceedings of SC13:
International Conference for High Performance Computing, Networking, Storage
and Analysis, 2013, http://dx.doi.org/10.1145/2503210.2503267.

H. Servat, G. Llort, J. Giménez, K. Huck, J. Labarta, Folding: Detailed analysis
with coarse sampling, tools for high performance computing 2011, in: Proceed-
ings of the 5th International Workshop on Parallel Tools for High Performance
Computing, http://dx.doi.org/10.1007/978-3-642-31476-6_9.

G. Llort, J. Labarta, Intelligent Instrumentation Techniques to Improve the Traces
Information-Volume Ratio, Universitat Politécnica de Catalunya — BarcelonaTech,
2015, [Online]. Available: http://hdl.handle.net/10803/326469.
Barcelona Supercomputing Center — Performance Tools, Dimemas,
[Online]. Available: http://tools.bsc.es/dimemas.

M. Casas, R. Badia, J. Labarta, Automatic analysis of speedup of MPI applications,
in: Proceedings of the 22nd Annual International Conference on Supercomputing,
1SC’08, 2008, http://dx.doi.org/10.1145/1375527.1375578.

A. Stone, J.M. Dennis, M.M. Strout, The CGPOP Miniapp, Version 1.0, Col-
orado State University, Computer Science Department, Tech. Report CS-11-103,
2011, [Online]. Available: https://www.cs.colostate.edu/TechReports/Reports/
2011/tr11-103.pdf.

J. Giménez, E. Mercadal, G. Llort, S. Mendez, Analyzing the efficiency of hybrid
codes, in: Proc. 19th International Symposium on Parallel and Distributed Com-
puting, ISDPC, Warsaw, Poland, 2020, http://dx.doi.org/10.1109/ISPDC51135.
2020.00014.

1. Carnimeo, F. Affinito, S. Baroni, O. Baseggio, L. Bellentani, R. Bertossa, P.D.
Delugas, F.F. Ruffino, S. Orlandini, F. Spiga, P. Giannozzi, Quantum ESPRESSO:
One further step toward the exascale, J. Chem. Theory Comput. 19 (2023)
6992-7006, http://dx.doi.org/10.1021/acs.jctc.3c00249.

J.W.S. McCullough, R.A. Richardson, A. Patronis, R. Halver, R. Marshall, M.
Ruefenacht, B.J.N. Wylie, T. Odaker, M. Wiedmann, B. Lloyd, E. Neufeld, G.
Sutmann, A. Skjellum, D. Kranzlmiiller, P.V. Coveney, Towards blood flow in
the virtual human: Efficient self-coupling of HemeLB, J. R. Soc. Interface Focus
(2020) http://dx.doi.org/10.1098/rsfs.2019.0119.

B.J.N. Wylie, HemelLB on SuperMUC-NG Performance Assessment Report,
POP2_AR_041, 2020, [Online]. Available: http://dx.doi.org/10.5281/zenodo.
4105742.

Performance Optimisation and Productivity Centre of Excellence in HPC, POP
standard metrics for parallel performance analysis, 2016, [Online]. Available:
https://pop-coe.eu/node/69.

B. Mohr, M. Schulz, Brian J.N. Wylie, Supporting performance analysis &
optimization on extreme-scale computer systems - Current state & future
directions, in: Tutorial at ISC’12 Conference (Hamburg, Germany, June 2012
and SC12 Conference (Salt Lake City, UT, USA), 2012, [Online]. Available:
http://hdl.handle.net/2128,/4902.

2023,

http://dx.doi.org/10.1109/SUPERC.1994.344292
http://dx.doi.org/10.1109/SUPERC.1994.344292
http://dx.doi.org/10.1109/SUPERC.1994.344292
http://teachtogether.tech/
https://www.hpccoe.eu/eu-hpc-centres-of-excellence2/
https://www.hpccoe.eu/eu-hpc-centres-of-excellence2/
https://www.hpccoe.eu/eu-hpc-centres-of-excellence2/
http://xcalablemp.org/handbook/
http://xcalablemp.org/handbook/
http://xcalablemp.org/handbook/
http://dx.doi.org/10.1007/978-981-15-7683-6_1
http://dx.doi.org/10.1109/ICPPW.2010.62
http://dx.doi.org/10.1109/ICPP.2013.58
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb8
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb8
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb8
http://tools.bsc.es
http://dx.doi.org/10.1002/cpe.1556
http://dx.doi.org/10.1007/978-3-642-31476-6_7
https://icl.utk.edu/papi
https://icl.utk.edu/papi
https://icl.utk.edu/papi
http://www.vi-hps.org/tools/cms/upload/material/general/ToolsGuide.pdf
http://www.vi-hps.org/tools/cms/upload/material/general/ToolsGuide.pdf
http://www.vi-hps.org/tools/cms/upload/material/general/ToolsGuide.pdf
http://tools.bsc.es/extrae
http://tools.bsc.es/paraver
https://tools.bsc.es/doc/1370.pdf
https://asc.llnl.gov/codes/proxy-apps/lulesh
https://asc.llnl.gov/codes/proxy-apps/lulesh
https://asc.llnl.gov/codes/proxy-apps/lulesh
http://dx.doi.org/10.1109/IPDPS.2009.5161027
http://dx.doi.org/10.1109/IPDPS.2009.5161027
http://dx.doi.org/10.1109/IPDPS.2009.5161027
http://dx.doi.org/10.1145/2503210.2503267
http://dx.doi.org/10.1007/978-3-642-31476-6_9
http://hdl.handle.net/10803/326469
http://tools.bsc.es/dimemas
http://dx.doi.org/10.1145/1375527.1375578
https://www.cs.colostate.edu/TechReports/Reports/2011/tr11-103.pdf
https://www.cs.colostate.edu/TechReports/Reports/2011/tr11-103.pdf
https://www.cs.colostate.edu/TechReports/Reports/2011/tr11-103.pdf
http://dx.doi.org/10.1109/ISPDC51135.2020.00014
http://dx.doi.org/10.1109/ISPDC51135.2020.00014
http://dx.doi.org/10.1109/ISPDC51135.2020.00014
http://dx.doi.org/10.1021/acs.jctc.3c00249
http://dx.doi.org/10.1098/rsfs.2019.0119
http://dx.doi.org/10.5281/zenodo.4105742
http://dx.doi.org/10.5281/zenodo.4105742
http://dx.doi.org/10.5281/zenodo.4105742
https://pop-coe.eu/node/69
http://hdl.handle.net/2128/4902

B.J.N. Wylie et al.

[31]

[32]

[33]

[34]

[35]

[36]

G. Corbin, C. Feld, M. Geimer, M. Gerndt, J. Linford, A. Malony, Y. Oleynik, M.
Schliitter, S. Shende, R. Tschiiter, A. Visser, M. Weber, B. Wesarg, B. Williams,
F. Winkler, B.J.N. Wylie, J. Ziegenbalg, Hands-on practical hybrid parallel
application performance engineering, in: Tutorial at ISC High Performance &
SC Conferences: Denver, CO, USA, Nov. 2023; Hamburg, Germany, May 2023;
Dallas, TX, USA, Nov. 2022; Hamburg, Germany, May 2022; Online/St.Louis,
MO, USA, Nov. 2021; Frankfurt am Main, Germany, June 2021; Online/Atlanta,
GA, USA, Nov. 2020; Denver, CO, USA, Nov. 2019; Frankfurt am Main, Germany,
June 2019; Frankfurt am Main, Germany, June 2018; Denver, CO, USA, Nov.
2017; Frankfurt am Main, Germany, June 2017; Salt Lake City, UT, USA, Nov.
2016; Frankfurt am Main, Germany, June 2016; Austin, TX, USA, Nov. 2015;
Frankfurt am Main, Germany, June 2015; New Orleans, LA, USA, Nov. 2014;
Leipzig, Germany, June 2014; Denver, CO, USA, Nov. 2013; Leipzig, Germany,
June 2013, [Online]. Available: http://hdl.handle.net/2128/33425.

M. Gerndt, E. Cesar, S. Benkner, Automatic Tuning of HPC Applications — the
Periscope Tuning Framework (PTF), Shaker Verlag, ISBN: 978-3-8440-3517-9,
2015.

1. Compres, J. Protze, M. Schulz, R. Tschiiter, B.J.N. Wylie, Tools for high
productivity supercomputing, in: Tutorial at Europar’13 European Conference on
Parallel Computing (Aachen, Germany), 2013, http://hdl.handle.net/2128/5923.
J. Giménez, B.J.N. Wylie, Determining parallel application execution efficiency
& scaling using the POP methodology, in: Tutorial at ISC High Performance
Conference (Online, Germany), 2021, [Online]. Available: http://hdl.handle.net/
2128/30380.

M. Garcia-Gasulla, S. Mendez, A. Visser, B.J.N. Wylie, Determining parallel
application execution efficiency & scaling using the POP methodology, in:
Tutorial at ISC High Performance Conference (Hamburg, Germany), 2024.

R.F. Van der Wijngaart, H. Jin, NAS Parallel Benchmarks, Multi-Zone Versions,
NASA Advanced Supercomputing Division, NAS-03-010, Moffett Field CA, 2003,
[Online]. Available: https://www.nas.nasa.gov/software/npb.html.

13

[37]

[38]

[39]

[40]

Future Generation Computer Systems 162 (2025) 107472

J.H. Gobbert, T. Kreuzer, A. Grosch, A. Lintermann, M. Riedel, Enabling interac-
tive supercomputing at JSC lessons learned, in: R. Yokota, J. Shalf, M. Weiland,
S. Alam (Eds.), ISC High Performance 2018 International Workshops, Revised
Selected Papers, in: Lecture Notes in Computer Science, vol. 11203, Springer
Verlag, 2018, pp. 669-677, http://dx.doi.org/10.1007/978-3-030-02465-9_48.
D. Hudak, D. Johnson, A. Chalker, J. Nicklas, E. Franz, T. Dockendorf, B.L.
McMichael, Open OnDemand: A web-based client portal for HPC centers, J. Open
Source Softw. 3 (25) (2018) 622, http://dx.doi.org/10.21105/j0ss.00622.

D. Brommel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert, The High-
Q Club: Experience with extreme-scaling application codes, Supercomput. Front.
Innov. 5 (1) (2018) 59-78, http://dx.doi.org/10.14529/sfi180104.

A. Basden, M. Weinzierl, T. Weinzierl, B.J.N. Wylie, A novel performance analysis
workshop series concept, developed at Durham University under the umbrella of
the ExCALIBUR programme, 2021, http://dx.doi.org/10.5281/zenodo.5155503,
Zenodo & ExCALIBUR, [Online]. Available:.

Brian J.N. Wylie has been a scientific researcher in Jiilich
Supercomputing Centre since 2004, in the group developing
the Scalasca toolset for scalable performance analysis of
large-scale parallel applications. He established and contin-
ues to contribute to tools training activities of the Virtual
Institute-High Productivity Supercomputing (VI-HPS). His
current focus is the assessment of exascale readiness of
applications comprising very large numbers of processes
and threads on heterogeneous accelerated computer sys-
tems within the Performance Optimisation and Productivity
(POP) Centre of Excellence in HPC.

http://hdl.handle.net/2128/33425
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb32
http://hdl.handle.net/2128/5923
http://hdl.handle.net/2128/30380
http://hdl.handle.net/2128/30380
http://hdl.handle.net/2128/30380
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00418-7/sb35
https://www.nas.nasa.gov/software/npb.html
http://dx.doi.org/10.1007/978-3-030-02465-9_48
http://dx.doi.org/10.21105/joss.00622
http://dx.doi.org/10.14529/jsfi180104
http://dx.doi.org/10.5281/zenodo.5155503

	15+ years of joint parallel application performance analysis/tools training with Scalasca/Score-P and Paraver/Extrae toolsets
	Introduction
	Partner organisations & projects
	VI-HPS
	POP CoE
	JLESC project

	Tools
	BSC: Paraver/Extrae toolset
	Extrae
	Paraver
	Performance analytics
	Dimemas
	Efficiency model

	JSC: Scalasca/Score-P/CUBE toolset
	Execution and scaling efficiencies

	Complementarity and development of BSC & JSC tools

	Training
	Tutorials
	Tuning Workshops
	Staggered workshop series
	Workshops by&for under-represented groups in HPC

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

